
International Journal of Scientific & Engineering Research, Volume 5, Issue 10, October-2014 1167
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Coverage Criteria for Testing SQL Queries
Mona Gharib Zahraa E. Mohamed Mohamed Reda

 Faculty of Science, Mathematics Department, Zagazig University

Zagazig, Egypt

Abstract—Database query language could be difficult to non-expert users and learning formal queries takes a lot of time. Accessing a database
requires machine-readable instructions that not everybody is supposed to know, they should be able to ask a question in natural language without
knowing either the underlying database schema or any complex structured machine language. Also, we can type a question or a sentence in their
natural language. We will use mapping between natural language and the database SQL query. In this paper, we will use the coverage criteria for
evaluating the adequacy of a test suite for SQL queries that retrieve information from the database that join information from different tables and whish,
selected data is further processed. We will use automatic mapping of questions into SQL queries. We apply test case on AdventureWorks2012 database
and use different condition coverage criteria for representing all possible combinations and results of evaluation conditions for a SQL query then
coverage criteria used to develop test inputs queries from a real-life application.

Index Terms—SQL Testing, Test Adequacy Criteria, Coverage Criteria, Natural Language Interface.

——————————  ——————————

INTRODUCTION
Ranging from legacy applications in use in the banking,
financial or insurance sectors to modern e-commerce
applications, there is one component which they all have in
common, the database, where sensitive business
information is stored and retrieved. Programming
languages have experienced a paradigm shift from
monolithic programs written in old imperative languages
to highly scalable enterprise applications, reusable
components and web services written in object-oriented
languages. At the same time, database management
systems (DBMS) have evolved, increasing their
performance, scalability and reliability.
A major problem that faces the NLIDB designer is the
identification of the tables that contain the required
information and the desired attributes in query. In [1],
previous work used static built-in templates of possible
production rules for the possibly introduced queries.
The standard approach to database NLP systems relies on
creating a ‘semantic grammar’ for each database, and uses
it to parse the NL questions. The semantic grammar creates
a representation of the semantics of a sentence. After some
analysis of the semantic representation a database query
can be generated to SQL. The most frequently used SQL
statements in commercial applications can retrieve
information (SELECT queries) [2], that use a common set of
major characteristics, such as the database schema and the
core clauses for projecting, joining, selecting and grouping
data. However, developing a single statement may be a

complicated task and queries using GROUP BY, ORDER
and HAVING clauses are considered especially difficult by
programmers. The aim of this work is to define coverage
criteria for assessing the adequacy of the test suite to
exercise various situations that affect the data retrieved by
SQL query.
Our approach studies queries in an isolated way without
considering the imperative code where they will be
embedded and the tests can be used as prerequisites for
embedding queries in the imperative code. This paper
improves the approach that given in [3], where queries only
had FROM and WHERE clauses and conditions were
exclusively composed of attributes, constants or NULL.
Moreover, we consider parameters, GROUP BY and
HAVING clauses, aggregate functions, ALL and DISTINCT
quantifiers along with UNION operator. The approach
involves building one or more coverage nodes that are
created on the basis of the structure query and database
schema. Nodes are arranged in trees for assessing the
adequacy of join and selection operations, and in sets for
assessing the coverage of the processing performed after
selection. Then, coverage is evaluated in relation to the load
provided by the test database and to the actual parameters
dependent on the imperative code. After evaluating
coverage, with the information of the non-covered
situations in the nodes, the tester has guidelines to follow in
the process of completing the test suite by adding or
changing information in the test database, creating a new

test database and/or calling the query with different
parameters.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 10, October-2014 1168
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

The paper is organized as follows: in section 2 introduces
an overview of related work. In section 3, the coverage
information is used to develop test inputs for a set of

queries obtained from a real-life application. In section 4,
we describe experimental and the evaluation of the
coverage of SQL queries is performed. Finally, we conclude
in section 5.

RELATED WORKS
Over the last fifteen years or so, much of the NLI
community has focused on the use of statistical and
machine learning techniques to solve a wide range of
problems in parsing, machine translation, and more. Yet,
classical problems such as building Natural Language
Interfaces to Databases (NLIs) are far from solved.
Even though a great deal of research in software testing has
been carried out in recent years, few studies have been
specifically related to the testing of database applications,
whether for test input selection criteria or test input
adequacy criteria. An initial way of classifying the related
work is in relation to the information used to meet the
criteria: only the database, only the queries, and both of
them. The selection of test inputs by means of considering
the database schema and constraints though, not the
application code is the approach taken by [4]. In order to
automatically load the initial database, a set of valid and
invalid data is generated from a database schema
considering primary keys, null values and established
ranges, but not referential integrity. Besides basing on
database schema, select the test inputs using a set of non-
deterministic rules like associations, correlations and
patterns, and statistics of the current live data in the
production database. The structure of the data and the

query under test is considered in most studies on database
testing. Present a theoretical approach using relational
algebra and a notion of adequacy related to the concept of
an Armstrong database. Queries, with select, project and
join operations, expressed in relational algebra are
represented as query graphs to be evaluated and a test
database is generated for each given query after evaluating
functional dependencies obtained from the database
schema and the query. In this paper, apart from clauses
included in parameters, grouping operations, aggregate
functions and set quantifiers are considered, and selected
test inputs for a query are evaluated according to a defined
adequacy criterion.
These works are others of the most similar to this paper
because they establish explicitly defined adequacy criteria,
although SQL semantics are not taken into consideration.
Also define a test adequacy criterion based on the coverage
of all the SQL statements dynamically generated that an
application can issue to a database. The approaches
presented in are complementary to our approach and, in all
cases; a common feature is that validation is performed
using non-trivial systems or real-life applications, which
inspires confidence in the capabilities of each method.

SQL QUERY MAPPING WITH QUESTION

Automatically mapping natural language into
programming language semantics is a major and
interesting challenge in the field of computational
linguistics since it may have a direct impact on industrial
and social worlds. For example, accessing a database
requires machine-readable instructions that not everybody
is supposed to know. Users should be able to pose a
question in natural language without knowing either the
underlying database schema or any complex structured
machine language. The development of natural language
interfaces over databases (NLIDBs), that translate the
human intent into machine instructions used to answer
questions, is indeed a classic problem that is becoming of
greater importance in today’s world.

 Studying the automatic mapping of questions into SQL
queries is important for two main reasons: (a) it allows
designing interesting applications based on databases (b) it
offers the possibility to understand the role of syntax in
deriving a shared semantics between a natural language
and an artificial language.
We consider a dataset of natural language questions N and
SQL queries S related to a specific domain/database and
we automatically learn such mapping from the set of pairs
P = N × S. More in detail, (a) we assume that pairs are
annotated as correct when the SQL query answers to the
question and incorrect otherwise (b) we train a classifier on
the above pairs for selecting the correct queries for a

Question. Then, to map new questions in the dataset of the
available queries, (c) we rank the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 10, October-2014 1169
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Latter by means of the question classifier score and by
selecting the top one. In the following we provide the
formal definition of our learning approach.
The first deals with the way in which the queries select and
join information from different tables and the second with
the way in which selected data is further processed. The
most frequently used SQL statements in commercial
applications are those that retrieve information (SELECT
queries), that use a common set major characteristics, such
as the database schema and the core clauses for projecting,
joining, selecting and grouping data. However, developing
a single statement may be a complicated task [5] and
queries using GROUP BY, ORDER and HAVING clauses
are considered especially difficult by programmers.
 We provide a novel representation of the database schema
by modeling all the tables in a single structure that enables
the support for larger databases schemas. On the other
hand, it is usual to use the same test database for a set of
queries, as it reduces the cost of the test preparation and

execution. Unlike many query-aware generation
procedures, which generate one test database for each
individual query of an application, our approach supports
the automatic generation of a single test database for
multiple queries within the application.
We present an approach for automatic populating test
databases which employs a coverage criterion specifically
tailored for SQL queries. Given a test database, a coverage
rule holds if the execution of the corresponding SQL query
against the test database produces at least one row as
output. The coverage rules allow measuring the coverage of
a test database against a set of queries or are used as a test
input selection criterion.
We apply supervised techniques and, consequently, we
need training data. More precisely, we need correct and
incorrect pairs of questions and queries. Since in practical
applications this is the most costly aspect, we should
generate such learning set in a smart way.

In this perspective, in real world domains, we may expect
to have examples of questions and the associated queries
which answer to such information need. Such pairs may
have been collected when users and operators of the
database worked together for the accomplishment of some
tasks. In contrast, we cannot assume to have available pairs
of incorrect examples, since (a) the operator tends to
immediately provide the correct query and (b) both users
and operators do not really understand the use of negative
examples and the need to have unbiased distribution of
them. Therefore, we need techniques to generate negative
examples from an initial set of correct pairs see Fig.1.

Fig.1 Query Questions

SQL QUERY AND QUESTION TESTING

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 10, October-2014 1170
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Now, we will use Control Flow Graph (CFG) for
illustrating coverage criteria and showing suggestions
paths first use aggregate functions in attributes and define
condition by using logical conditions or Group by or
operators to filter data as see fig. 2.

Fig. 2 SQL Query Control Flow Graph (CFG)

We will use control flow graph to illustrate SQL query
coverage criteria Attributes and Conditions, we can use
aggregate function (SUM, MIN, MAX, COUNT, and AVG)
in query from user question and also map conditions using
logical condition (AND,OR,NOT) or Group by or Operator
with mapping from user question. We can use aggregate
functions with query parameters without conditions or we
can add one condition or more than one condition, we have
different paths after mapping query with user question [6].
We can define paths by passing actual parameters from
user question to actual parameters to SQL Query.

APPLY SQL QUERY COVERAGE CRITERIA
The goal of this paper is to define coverage criteria for
assessing the adequacy of the test suite to exercise various
situations that affect the data retrieved by an SQL query.
The approach studies queries in an isolated way without
considering the imperative code where they will be
embedded and the tests can be used as prerequisites for
embedding queries in the imperative code.
This paper improves where queries only had FROM and
WHERE clauses and conditions were exclusively composed
of attributes, constants or NULL. The present paper also
considers parameters, GROUP BY and HAVING clauses,

aggregate functions, ALL and DISTINCT quantifiers along
with UNION operator. Moreover, it shows how to
automate the calculation of the coverage and it analyzes
different kinds of faults in queries classified in two
categories: non SQL-specific (but typical faults in the
conditions in imperative programs) and SQL-specific. The
approach involves building one or more coverage nodes
that are created on the basis of the structure of the query
and the database schema. The subset considered in this
paper is that represented in the following BNF grammar:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 10, October-2014 1171
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

We will use different operators in search conditions to filter
query data in <Search conditions> term is a logical
predicate composed of logical conditions concatenated with
AND , OR operators. A condition is an expression in the
query in the form X R Z where X and Z are sets of values
represented by the name of their column [7], aggregate
functions, constants, parameters or NULL, R is an operator
of {=,! =, <, <=, >, >=} and an aggregate function (count,
sum, max, min or avg) transforms a set of scalars or a set of
rows into a scalar.

Fig.3 Query Coverage Criteria

CONDITION
We can use simple condition with one parameter using
operator of {=,! =, <, <=, >, >=} or complex condition by
adding more than one condition and using logical
operators {AND, OR, NOT} between theses condition in
where clauses and we can use GROUP BY or HAVING
after conditions.
For example, what are departments that group name is
Research and Development OR Manufacturing?

QUERY PARAMETERS
We will use parameters @1, @2 and @3 in different
conditions to pass values to SQL Queries for testing such
Q1 we will pass 3 different parameters values to get hire
date that is great than @1 and less than @2 after get result
we add logical operator AND to compare data with
parameter @3 that all parameters with same data types. In
Q3 we will use parameters with different data types @1 to
pass value to contact type,@2 to pass value to contact name
and so on for remaining queries.

 AGGREGATE FUNCTIONS
The aggregate functions (SUM, MIN, MAX, COUNT, and
AVG) perform simple calculations over all values that are
included in each group. Additionally, SUM, COUNT and
AVG can specify the optional set quantifier DISTINCT,

which, if present, excludes the repeated values from the
calculation. Two conditions that affect the calculation of the
aggregate function are considered: (1) if some values are
repeated, then only one value is taken into account if the
DISTINCT set quantifier is present and (2) if a value is
NULL, then it is not taken into account.
For example, what is the Sum of vacation hours for all
employees?

GROUP BY
The GROUP BY clause indicates how to combine the
selected rows and the HAVING clause performs a final
filter based on other criteria (having-conditions).Let Q be a
query with a GROUP BY clause composed of a list of
grouping columns A1...Ac (each of them is either the name
of a single attribute or an expression over the values of
attributes). In this case the select-list is in the form A1...Ac,
Fc+1...FN, where each Fi is an aggregate function
expression over the values of attributes. According to SQL
specification [SQL 1992], groups are partitioned “into the
minimum number of groups such that for each grouping
column of each group, no two values of that grouping
column are distinct”. As the semantics of the GROUP BY
clause interprets null values in the grouping column as
belonging to different groups, two conditions are
considered, one in which grouping columns are not NULL
and another in which they are.

 EVALUATING CONDITION COVERAGE

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 10, October-2014 1172
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

We use a condition coverage CC for representing all
possible combinations of the results of evaluation of the
conditions of an SQL query. Each condition C, extracted
from Q (which includes the conditions in the JOIN and/or
WHERE clauses),
Given a SELECT query Q, its corresponding condition
coverage CC (CS) is constructed by considering the ordered
set of conditions CS=(C1,………..,Cs) of Q. After evaluating
all condition coverage, some of the values are covered and
some others remain uncovered. The theoretical condition
coverage is calculated as the percentage of covered c-
values. As this measure does not consider impossible c-
values, it is necessary to define another that takes them into
account, the schema condition coverage (c-coverage):

A c-value is labeled as ‘N’ if it is not covered, ‘Y’ if it is
covered, ‘I’ (impossible) if it cannot be covered due to some
known restriction imposed by the database schema and ‘U’
(unreachable) if it cannot be covered because of
characteristics or constraints that do not depend on the
database schema, such as the condition, their operands,
constants or parameters. Note that if database schema is
modified
affecting any attribute of the condition, the impossible c-
values could change with the new constraints. Initially,
each c-value is labeled ‘N’ meaning that the c-value has not
been covered yet. Moreover, the c-values impossible to
cover because of the database schema are automatically
labeled as ‘I’.

Fig.3 Condition Coverage

EXPERIMENTAL EVALUATION
Adventure Works Cycles, the fictitious company on which
the AdventureWorks sample databases are based, is a large,
multinational manufacturing company. The company
manufactures and sells metal and composite bicycles to
North American, European and Asian commercial markets.
While its base operation is located in Bothell, Washington
with 290 employees, several regional sales teams are
located throughout their market base. In 2000, Adventure
Works Cycles bought a small manufacturing plant; Import
adores Neptune, located in Mexico. Importadores Neptuno
manufactures several critical subcomponents for the

Adventure Works Cycles product line. These
subcomponents are shipped to the Bothell location for final
product assembly. In 2001, Import adores Neptune became
the sole manufacturer and distributor of the touring bicycle
product group. Coming off a successful fiscal year,
Adventure Works Cycles is looking to broaden its market
share by targeting their sales to their best customers,
extending their product availability through an external
Web site, and reducing their cost of sales through lower
production costs.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 10, October-2014 1173
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig.4 Adventure Works Cycles

You can get more details about AdventureWorks Sample
OLTP Database [11]:

DATABASE OBJECTS

Fig.5 Adventure Works Objects

We will use standard Microsoft Adventure Works
database for testing our application, our experimental
evaluation as follow. We will have 8 questions with 8
SQL query examples as follow:

Summarizes all the results obtained after using
coverage:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 10, October-2014 1174
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig.6 Query Matrix

We apply test case on AdventureWorks2012 database
different schemas and tables .first schema
[HumanResources] with table [Employee] that
contains 290 records with different queries and
conditions apply on query
 (Q1, Q2, Q4, Q5, Q6, Q7), second schema [Person]
with table [ContactType] that contains 20 record with
different queries and conditions apply on query (Q3)
finally using [Person] schema with different tables
[Address], [BusinessEntityAddress] and
[AddressType] that contains 19671 records with
different queries and conditions apply on query (Q8)
using join operators to select data from more than
one table then we Covered values as examples to
apply test for system.

CONCLUSION
Adequacy criteria provide an objective measurement of test
quality. Although these criteria are a major research issue in
software testing, little work has been specifically targeted
towards the testing of database-driven applications. In this
paper, two structural coverage criteria are provided for
evaluating the adequacy of SQL queries that retrieve
information from the database. We evaluate the approach
on an industrial case study including a number of queries
and a schema with a large number of tables and columns
by generating set of Coverage Rules for each condition in
where clause. we will use control flow diagram to illustrate
SQL query coverage criteria Attributes and Conditions, we
can use aggregate function (SUM, MIN, MAX, COUNT,
and AVG) in query from user question and also map
conditions using logical operators (AND,OR,NOT) or
Group by with mapping from user question. We can use
aggregate functions with query parameters without

conditions or we can add one condition or more than one
condition.
This paper improves queries that only had FROM, WHERE
clauses and conditions were exclusively composed of
attributes, constants or NULL. Also we consider
parameters, GROUP BY and HAVING clauses, aggregate
functions, ALL and DISTINCT quantifiers along with
UNION operator. Finally we apply SQL Query coverage
criteria using Conditions. We can use simple condition with
one parameter using operator of {=,! =, <, <=, >, >=} or
complex condition by adding more than one condition and
using logical operators {AND, OR, NOT} between theses
condition in where clauses and we can use GROUP BY or
HAVING after conditions. Aggregate Functions The
aggregate functions (SUM, MIN, MAX, COUNT, and AVG)
GROUP BY clause indicates how to combine the selected
rows and the HAVING clause performs a final filter based
on other criteria.

REFERENCES

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 10, October-2014 1175
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

[1] Zahraa E. Mohamed, Mona Gharib, Mohamed Reda:”
Intelligent Multidimensional Database Interface
“International Journal of Scientific & Engineering Research,
Volume 4 |(11), 2013.
[2] I. Androutso poulos, G. D. Ritchie, and P. Tarnish.”
Natural Language Interfaces to Databases –
An Introduction. In Natural Language Engineering”,
volume 1, part 1, pages 29–81, 1995.
[3] Mª José Suarez-Cabal. And Javier Tuya. “Structural
Coverage Criteria for Testing SQL Queries” Journal of
Universal Computer Science, vol. 15(3), 2009.
[4] Binnig, C., Kossmann, D., Lo, E. 2007. “Reverse query
processing”. In Proceedings of the 23rd International
Conference on Data Engineering. IEEE Computer Society,
Washington, DC.
[5] Tuya, J., Suarez-Cabal, M.J., de la Riva, C. 2010. “Full
predicate coverage for testing SQL database queries”.
Softw. Test. Verify. Real, in press.

[6] Brass, S., Goldberg, C.: 2005 “Semantic Errors in SQL
Queries: A Quite Complete List (Extended version)”;
Journal of Systems and Software 79, 5 (), 630-644.
[7] Tuya, J., Suarez-Cabal, M.J., De la Riva, C., 2006, “SQL
Mutation: a Tool to Generate Mutants of SQL Database
Queries”; 2nd Workshop on Mutation Analysis.
 [8] Bruno, N., Chaudhuri, S. 2005. Flexible database
generators. In Proceedings of the 31st International
Conference on Very Large Data Bases. VLDB Endowment,
[9] Tuya, J., Suarez-Cabal, M.J., De la Riva, C. 2007;
“Mutating Database Queries”; Information and Software
Technology, 49, 4 .
 [10] Adventure Works Cycles Business Scenarios
http://technet.microsoft.com/en-
us/library/ms124825(v=sql.100).aspx
[11]Adventure Works databases ummary
http://www.dbdesc.com/output_samples/htmlbrowse_A
dventureWorks.html

IJSER

http://www.ijser.org/
http://technet.microsoft.com/en-us/library/ms124825(v=sql.100).aspx
http://technet.microsoft.com/en-us/library/ms124825(v=sql.100).aspx
http://www.dbdesc.com/output_samples/htmlbrowse_AdventureWorks.html
http://www.dbdesc.com/output_samples/htmlbrowse_AdventureWorks.html

	Mona Gharib Zahraa E. Mohamed Mohamed Reda
	Faculty of Science, Mathematics Department, Zagazig University
	[10] Adventure Works Cycles Business Scenarios
	http://technet.microsoft.com/en-us/library/ms124825(v=sql.100).aspx
	[11]Adventure Works databases ummary

